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The Problem

●Bad habits in code development
can break your code:

●Sometime also good practice in code 
development can overlook some hidden 
bug...

Keep on a straight path with proper code testing.

The more code you 
write without testing,
the more paths you 
have to check for 
errors.
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Continuous Integration

● Continuous Integration (CI) is a development practice that 
requires developers to integrate their code into a shared 
repository.

● Each “commit” is verified by an automated build procedure 
that tests the code and allows teams to detect problems 
early, hopefully before the code goes in production.
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Standard CI build job

● Developers commit new code 
implementing bug fix, new feature, …
– CI build job is triggered.

● Pull the code from the 
repository.

● Build the code.
● Run unit tests.
● Install the code.
● Run CI tests.

– Report the status of the CI build.
– Notify developers in case of failure 

in the CI build caused by their 
commits.
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CI build requirements

● A set of instructions to:
– setup the build environment;
– checkout the code;
– build the code;
– run unit tests;
– install the code;
– run integration tests.

●  Recommended storage:
– all package dependencies should live on CVMFS 

(this also allows to run the code on OSG sites);
– all data iles required by the CI build job should live 

in dCache;
– eventually some package dependency can live in 

/grid/fermiapp (not recommended).
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Unit and Integration tests
● Unit test

– A unit test is an automated piece of code
that invokes a single logical unit of
the system and checks a single
assumption about the behavior of that logical unit.

● Integration test
– Integrates/combines the unit tested modules and tests the behavior as a 

combined unit;
– its goal is to test the interfaces among the units/modules;
– veriies that the (major) parts of a system work well together.

● Test features:
– trustworthy (you don't need to debug the test code just to be sure of its 

results);
– able to be fully automated (you want to run the test in an automatic 

procedure);
– run fast (you want quick feedback);
– independent (you want be able to run the tests in parallel, running 

concurrently as many test as the number of CPU cores available on the 
build node);

– ...
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CI test categories

● Regression test:
– runs existing tests against modiied code;
– checks whether code changes break anything that 

worked prior to the change.
● Reproducibility test:

– make sure that running the code using the same 
input, will “always” generate the same output.

● Back-compatibility test:
– make sure that new code is able to access data iles 

produced with a previous code release.
● Validation test:

– make sure that new code produces meaningful 
results.

● ...



6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop14

The CI Project
● Fermilab has already applied the Continuous 

practice to the LArSoft-based experiments. 
Experiments on-boarded in LAr CI are: μBooNE, 
DUNE, LArIAT and ArgoNeuT.

● The aim of the CI Project is to improve the existing 
tools and extend the CI service also to other
IF experiments;

● the CI Project can help
to have a healthy code
at all times.
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The CI Project

● Provides:
– Jenkins project associated to the CI build;
– repository with general script to handle CI 

builds;
– repository for the experiment CI 

coniguration iles.
– Web application for monitoring;
– DB to collect/store statistics (build time, 

memory usage, …);
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The Jenkins project for NOvA CI

● Started to on-board NOvA 
into the CI Project;

● nova_ci_beta Jenkins project 
used for NOvA CI builds;

● uses SLF6 build slaves.
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Work low coniguration example

“personality”
configuration using MRB

as build tool

default
configuration

cfg/worklow.cfg excerpt
[default]
personality=mrb
worklow=NOvA_CI
noify_email=vito@fnal.gov,mfatoru@fnal.gov
noify_success=true
noify_blame=false
build_db_uri=htp://dbweb6.fnal.gov:8080/NovaCI/app
···
[mrb]
# deine what the stages do:
# eval_n: setup the code environment
_eval1 = source /cvmfs/nova.opensciencegrid.org/externals/setups
_eval2 = . `ups setup ups`
_eval3 = setup mrb
…
#checkout: instrucion to checkout the code 
…
#build: instrucion to build the code
…
# make_test:instrucion to run unit tests
…
#install: instrucion to install the code
...
#ci_tests: instrucion to run the CI tests
…
[NOvA_CI]
stages  = _eval_n checkout_x_modules build make_test install ci_tests
modules = novaart.pkgs.svn

● The “default coniguraion” selects the personality and the worklow to use.
● The “personality coniguraion” deines the stages using a paricular build tool.
● The “worklow coniguraion” selects the stages to execute in the CI build, and 

the list of code modules to process.
● In the current implementaion the NOvA CI worklow runs 6 stages: _eval_n; 

checkout; build; make_test (unit tests); install and ci_tests (disclaimer: unit test are not available for NOvA).

workflow configuration
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Test coniguration example

CI test section

Experiment
specific
section

test/ci_tests.cfg excerpt
[DEFAULT]
STEPS_NOVASOFT = raw raw2root reco calib
NOVA_REFERENCE_VERSION_NOVASOFT=default
BASEFILENAME_NOVASOFT=neardet_r00011552_s05
EXPCODE_NOVASOFT=novasof
EXPSCRIPT_NOVASOFT=ci_regression_test_novasof.sh
INPUTFILEDIR_NOVASOFT=/pnfs/nova/persistent/users/vito/ci_tests_inpufiles
[test ci_raw2root_regression_test_novasof]
script=${NOVA_CI_DIR}/test/%(EXPSCRIPT_NOVASOFT)s
STEP=1
NEVENTS=1
TRIGGER=t00
SOURCE_STEP=raw
STREAM_LABEL=none
args=%(NEVENTS)s %(STEP)s %(NOVA_REFERENCE_VERSION_NOVASOFT)s %(BASEFILENAME_NOVASOFT)s_%(TRIGGER)s
%(EXPCODE_NOVASOFT)s %(SOURCE_STEP)s %(STREAM_LABEL)s %(STEPS_NOVASOFT)s
inpufiles=%(INPUTFILEDIR_NOVASOFT)s/%(BASEFILENAME_NOVASOFT)s_%(TRIGGER)s_Reference_%(SOURCE_STEP)s_
%(NOVA_REFERENCE_VERSION_NOVASOFT)s.raw %(INPUTFILEDIR_NOVASOFT)s/testmask.txt
%(INPUTFILEDIR_NOVASOFT)s/ci_test_raw2root_novasof.fcl
···
[suite default]
testlist=ci_raw2root_regression_test_novasof ci_reco_regression_test_novasof ci_calib_regression_test_novasof

● The “experiment specific section” initializes a set of variables required to 

initialize the script that runs the CI tests.
● The “CI test section” sets additional variables for the specific CI test.
● The “CI test suite section” collects a list of tests to run all together.
● In the current implementation there are 3 regression tests running the 

Raw2Root, Reconstruction and Calibration NOvA processing.

CI test suite
section
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Web application for CI monitoring

Useful to monitor past and current CI build status
[http://dbweb6.fnal.gov:8080/NovaCI/app/view_builds/index]

● shows the status of each stage of the CI worklow;
● shows also the status for individual CI tests using a tool-ip;
● the status of each CI stage and CI test is ideniied by a color code;
● each bullet in the matrix provides a link to the logs;
● the Web pulls informaion from the NOvA CI DB.

http://dbweb6.fnal.gov:8080/NovaCI/app/view_builds/index
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CI monitoring statistics

Statistics from the NOvA CI 
“Calibration test”

Statistics from the NOvA CI 
“build stage”

Link to the logs

Memory usage
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CI monitoring statistics - μBooNE

CI regression test in production
for uboonecode

uboonecode switches
from CRY to CORSIKA

uboonecode test including the work
of the memory profiling “task force”

● Memory usage for 1 event.
● Using CORSIKA as cosmic shower generator, memory 
usage jumped from ~2Gb to ~3.5Gb.
● Over the time the memory usage got some improvement.
● After the intervention of a memory proiling “task force” 
the memory usage went down to ~1.2Gb.

● Memory usage history plot: uboonecode geant4 stage as 
an example.
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Continuous Integration highlights

● CI will help you to have a healthy code at all times;
● CI worklow can handle code in git or svn 

repositories;
● CI worklow can build and test a list of 

interdependent modules altogether;
● user can test any desired branch/tag of the code;
● user can run CI tests locally using her/his own 

code just built;
● users can add/implement their own CI tests.
● Experiments will be the stakeholder;
● References:

– the CI Project wiki

https://cdcvs.fnal.gov/redmine/projects/ci/wiki
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Are you interested in the CI service?

Experiments can require the CI service through SNOW:
Scientiic Computing Services / Scientiic Production Processing / 
Continuous Integration Service (working in progress)

● Basic requirements for the experiment code:
– have a well deined and documented build chain;

● possibly using MRB/cmake;
– have all software dependencies as UPS products;
– have all software dependencies available on CVMFS;
– have all needed accessory iles (lux iles, ...) on dCache.
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Future plans

● The CI Project Team is glad to provide the
CI service to IF experiments.

● The CI practice has already been successfully 
adopted by LArSoft-based experiments;

● NovA, the irst not LArSoft-based experiments, has 
just been on-boarded;

● the plan is to on-board all IF experiments;
– CI service will provide a software facility to constantly 

monitor the status of the experiment code;
● will help to maintain a healthy code;
● will help to monitor resource usage;
● will help to monitor code performances;
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Thank you!
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